Notes on the rational plane oscnodal quartic curve
نویسندگان
چکیده
منابع مشابه
Moving Curve Ideals of Rational Plane Parametrizations
In the nineties, several methods for dealing in a more efficient way with the implicitization of rational parametrizations were explored in the Computer Aided Geometric Design Community. The analysis of the validity of these techniques has been a fruitful ground for Commutative Algebraists and Algebraic Geometers, and several results have been obtained so far. Yet, a lot of research is still be...
متن کاملOn the Equations of the Moving Curve Ideal of a Rational Algebraic Plane Curve
Given a parametrization of a rational plane algebraic curve C, some explicit adjoint pencils on C are described in terms of determinants. Moreover, some generators of the Rees algebra associated to this parametrization are presented. The main ingredient developed in this paper is a detailed study of the elimination ideal of two homogeneous polynomials in two homogeneous variables that form a re...
متن کاملRational Points on Quartic Hypersurfaces
Let X be a projective non-singular quartic hypersurface of dimension 39 or more, which is defined over Q. We show that X(Q) is non-empty provided that X(R) is non-empty and X has p-adic points for every prime p.
متن کاملEmbedding quartic Eulerian digraphs on the plane
Minimal obstructions for embedding 4-regular Eulerian digraphs on the plane are considered in relation to the partial order defined by the cycle removal operation. Their basic properties are provided and all obstructions with parallel arcs are classified. ∗ The author is thankful for support from the Marsden Fund (Grant Number UOA-825) administered by the Royal Society of New Zealand. This gran...
متن کاملThe Newton Polygon of a Rational Plane Curve
The Newton polygon of the implicit equation of a rational plane curve is explicitly determined by the multiplicities of any of its parametrizations. We give an intersection-theoretical proof of this fact based on a refinement of the KušnirenkoBernštein theorem. We apply this result to the determination of the Newton polygon of a curve parameterized by generic Laurent polynomials or by generic r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1930
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1930-04932-0